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1.  Learning Outcomes 

After studying this module, you shall be able to  

 Appreciate  the need to further relax the constraints to not only allow exchange of energy 

but allow exchange of particles between the system and the surroundings 

 Derive the probability of finding a system with energy 𝑬𝒓 and number of particles 𝑵𝒓 in 

two alternative ways in Grand Canonical Ensemble: (i) system +heat reservoir system (ii)  

method of most probable state using Lagrange’s undetermined multipliers. 

 Identify Grand Partition function and know interesting properties of the Grand partition 

function as a function of macroscopic variables and link these to thermodynamic 

properties of the system such as Grand potential or thermodynamic potential.. 

 Relate grand canonical partition function to canonical partition function studied in last 

two modules.  

 Express Grand partition function as product of single orbital partition functions 

 Apply the approach of the Grand canonical ensemble via Grand canonical  partition 

function to study the following  : 

o Classical ideal gas 

o Derivation of Fermi and Bose distributions  

 Compare the occupation number of single particle Fermi-Dirac, Bose-Einstein and 

Maxwell-Boltzmann distributions 

2.  Introduction 

In modules XII, XIII and XIV we  introduced the microcanonical and canonical 

ensembles and the idea of partition function and laid down a systematic procedure to 

derive thermodynamic properties and applied theses to study a variety of interesting 

physical macroscopic systems. In going from microcanonical ensemble to canonical 

ensemble we  relaxed the constraint from complete isolation to allow exchange of energy 

with the surroundings, making 𝑬 a variable. Such a system is  now a closed system . 

However, to be more realistic, it is desirable to also allow exchange of matter or more 

precisely particles constituting the system, making 𝑵 another variable of the system.  

System is then said to be an open system. In equilibrium system has an average energy, 

〈𝑬〉 and an average number of particles 〈𝑵〉.  This open system is then described by a 

Grand Canonical Ensemble the subject matter of this module. This ensemble deals with 

microstates of a system kept at constant temperature (𝑻), constant chemical potential (𝝁) 

in a given volume 𝑽. As was seen in the case of canonical ensemble we will now have a 

new partition function called Grand partition function.  This shall be used to define grand 

potential followed by derivation of thermodynamic properties. We shall apply this 

approach to study once again the classical ideal gas. At the end of this module we shall 

also  use Grand potential to derive Fermi and Bose distribution from the knowledge of 

the fact that in Fermi distribution each state can have either zero or one number of 

particles and in Bose distribution each state can have number of particles from zero to 

infinity. In later modules we will have a re-derivation of these from a quantum 

mechanical perspective by actually counting the states. 
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3.  Grand Canonical Distribution Function: System and Heat Bath Approach 

 We follow the same approach followed for canonical ensemble system and heat bath 

approach. We take our system (designated 𝑨) and put it in a heat bath (designated 𝑨′) 
such that system and the heat bath (designated 𝑨𝑻=𝑨 + 𝑨′), Figure 1, are allowed to now 

exchange both energy and particles,  keeping system and heat bath in equilibrium at a  

common temperature 𝑻 and common chemical potential 𝝁. Heat bath is very large having 

a large heat capacity. The composite system (𝑨𝑻) together is completely isolated, such 

that if at any time if system 𝑨 has energy 𝑬𝒓  and number of particles 𝑵𝒓 and heat bath 𝑨′ 
having energy 𝑬𝒓′ and number of particles 𝑵𝒓′ then the total energy 𝑬𝑻 and total number 

of particles 𝑵𝑻 are constant i.e. 

 𝑬𝒔 + 𝑬𝒔
′ = 𝑬𝑻 = 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 (1) 

 

 𝑵𝒓 + 𝑵𝒓
′ = 𝑵𝑻 = 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 (2) 

 

 

 

 

 

 

 

Since heat bath is very large, 𝑬𝒔 ≪ 𝑬𝑻 and 𝑵𝒔 ≪ 𝑵𝑻 i.e.  

 𝑬𝒔

𝑬𝑻
= (𝟏 −

𝑬𝒔
′

𝑬𝑻
) ≪ 𝟏 

(3) 

 

 𝑵𝒓

𝑵𝑻
= (𝟏 −

𝑵𝒓
′

𝑵𝑻
) ≪ 𝟏 

(4) 

Since the heat bath is very large the number of states compatible to it with energy 𝑬𝒔
′  and 

particles 𝑵𝒓′, 𝛀′(𝑬𝒔
′ , 𝑵𝒓′), is also very large independent of the nature of the reservoir.  It 

is worth noting that larger the number of states available to the reservoir larger is the 

 
𝐴′, 𝐸𝑠

′ , 𝑁𝑟′𝑇  

 𝐴, 𝐸𝑠, 𝑁𝑟𝑇  

Figure 1 Heat bath A’ at equilibrium with system A at temperature T and chemical potential 𝝁 
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probability of it assuming energy 𝑬𝒔′  and having particles 𝑵𝒓′ and consequently the 

system immersed in heat bath assuming  energy 𝑬𝒔 and having number of particles 𝑵𝒓. 

As per the principle of equal apriori probability, different microstates in the reservoir are 

equally likely to occur, the probability 𝑷𝒓  of system 𝑨,   occurring with energy 𝑬𝒔 and 

number of particles 𝑵𝒓, is proportional to the number of microstates which the reservoir 

has i.e. 𝛀′(𝑬𝒔
′ , 𝑵𝒓

′ ). Therefore, 

 𝑷𝒔,𝒓 ∝ 𝛀′(𝐄𝒔
′ , 𝑵𝒓′) ≡ 𝛀′(𝑬𝑻 − 𝑬𝒔 , 𝑵𝑻 − 𝑵𝒓 ) (5) 

Noting the inequalities (3) and (4) we can expand the right hand side around 𝑬𝒔
′ = 𝑬𝑻 and 

𝑵𝒓
′ = 𝑵𝑻, which means around 𝑬𝒔 = 𝟎 and 𝑵𝒓 = 𝟎  Recalling that 𝛀′ is a very large 

number which varies very rapidly, it is therefore, more convenient to deal with logarithm 

of this function which is a slowly varying function. So  

 
𝐥𝐧 𝛀′(𝐄𝒔

′ , 𝑵𝒓′) = 𝐥𝐧 𝛀′(𝑬𝑻, 𝑵𝑻) + (
𝝏 𝐥𝐧 𝛀′

𝛛𝐄′
)

𝑬𝒓
′ =𝑬𝑻

(𝐄𝒔
′ − 𝑬𝑻)

+ (
𝝏 𝐥𝐧 𝛀′

𝛛𝑵′
)

𝑬𝒔
′ =𝑬𝑻

(𝑵𝐫
′ − 𝑵𝑻) + ⋯ 

  

(6) 

Or 

 
𝐥𝐧 𝛀′(𝐄𝐫

′ , 𝑵𝒓′) ≈ 𝐥𝐧 𝛀′(𝑬𝑻, 𝑵𝑻) + (
𝝏 𝐥𝐧 𝛀′

𝛛𝐄′
)

𝑬𝒔
′ =𝑬𝑻

(−𝑬𝒔)

+ (
𝝏 𝐥𝐧 𝛀′

𝛛𝑵′
)

𝑵𝒓
′ =𝑵𝑻

(−𝑵𝒓) … 

  

(7) 

Recalling (
𝝏 𝐥𝐧 𝛀′

𝛛𝐄′
) = 𝜷′ =

𝟏

𝒌𝑩𝑻′
 and at equilibrium 𝜷′ =

𝟏

𝒌𝑩𝑻′
= 𝜷 =

𝟏

𝒌𝑩𝑻
, (

𝝏 𝐥𝐧 𝛀′

𝛛𝑵′
) = 𝜶′ =

−
𝝁′

𝒌𝑩𝑻′
= 𝜶 = −

𝝁

𝒌𝑩𝑻
  equation (6) can be written as  

 𝐥𝐧 𝛀′(𝐄𝒔,
′ 𝑵𝒓′) ≈ 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 −  𝜷𝑬𝒔 − 𝜶𝑵𝒓 (8) 

Or  

  𝛀′(𝐄𝒔,
′ 𝑵𝒓′)  ≈ 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝒆𝜷𝑬𝒔−𝜶𝑵𝒓 (9) 

 

From (4) and (9) we get  
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 𝑷𝒔,𝒓 ∝ 𝐞−𝜷(𝑬𝒔−𝝁𝑵𝒓) (10) 

Since sum of all probabilities must sum to 1, normalising, () we get 

 
𝑷𝒔,𝒓 =

𝐞−𝜷(𝑬𝒔−𝝁𝑵𝒓)

∑ 𝐞−𝜷(𝑬𝒔−𝝁𝑵𝒓)
𝒔,𝒓

 

  

(11) 

Where, summation is over all the (𝑬𝒔, 𝑵𝒓)states which system 𝑨 can take.  Equation (11) 

is the Grand canonical distribution function which provides the probability of the system 

in state with energy 𝑬𝒔 and number of particles 𝑵𝒓.  

Furthermore, since equation (11) has been derived by using  very fundamental ideas of 

physics involving conservation of energy, extensiveness of energy 𝑬𝑻 = 𝑬𝒓 + 𝑬𝒓
′  , 

conservation of number of particles, extensiveness of number of particles and slow and 

smooth variation of 𝐥𝐧 𝛀(𝑬, 𝑵) , independent of the choice of  quantum mechanics or 

classical mechanics, it is applicable very generally as we shall see later in applications.  

4. Grand Canonical Distribution Function: Most Probable Value Approach    

 We consider an ensemble of ℕ identical systems which are allowed to mutually share 

total energy ℕ < 𝑬 > and a total number of particles ℕ < 𝑵 >. Let 𝒏𝒔𝒓 denote the 

number of system which have at any instant t an amount of energy 𝑬𝒔 and number of 

particles 𝑵𝒓   then these    together satisfy the following three conditions: 

 ∑  𝒏𝒔𝒓 = ℕ 

𝒔,𝒓

 
(12) 

 ∑ 𝒏𝒔𝒓𝑬𝒔

𝒓

= ℕ < 𝑬 >   (13) 

  ∑ 𝒏𝒔𝒓𝑵𝒓

𝒓

= ℕ < 𝑵 >   (14) 

 

Any set of values {𝒏𝒔𝒓}which satisfy conditions stated in equations (12), (13) and (14) is 

a possible way of distributing energy and particles among the members of the  ensemble. 

Number of such possible ways 𝕎{𝒏𝒓𝒔}, of distributing energy and particles among  the 

members of the ensemble is given by 

 
𝕎{𝒏𝒔𝒓}  =

ℕ!

∏ (𝒏𝒔𝒓!)𝒏𝒔𝒓

 
(15) 
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According to principle of equal apriori probability, all possible distribution of energy and 

particles among the members of the ensemble are equally likely, the frequency of 

achieving a given set {𝒏𝒓𝒔} is directly proportional to the number 𝕎{𝒏𝒓𝒔}. Out of all 

these sets the most probable set shall be the one for which 𝕎{𝒏𝒓𝒔} is maximum. Once we 

have identified this   set say {𝒏𝒓𝒔
∗ },  we shall be physically interested in this distribution. 

However statistically we can not ignore other {𝒏𝒓𝒔}′𝒔 with their corresponding weights or 

frequencies to calculate the expectation values or mean values of the numbers 𝒏𝒓 as given 

below 

 
〈𝒏𝒓𝒔〉 =

∑ 𝒏𝒓𝕎{𝒏𝒔𝒓}′
{𝒏𝒔𝒓}

∑  𝕎{𝒏𝒔𝒓}′
{𝒏𝒔𝒓}

 
(16) 

Significance of  𝒏𝒔𝒓
∗  lies in the fact that the fraction 

𝒏𝒔𝒓
∗

ℕ
  is the grand canonical 

probability𝑷𝒔𝒓  

Let us now calculate the desirable numbers {𝒏𝒔𝒓
∗ } and 〈𝒏𝒔𝒓〉 .  Again for the reasons 

stated earlier 𝐥𝐧 𝕎 is a slowly varying function and we shall use it to proceed further, 

which implies 

 𝐥𝐧 𝕎 = 𝐥𝐧 ℕ! − ∑ 𝐥𝐧 𝒏𝒔𝒓!

𝒔𝒓

 
(17) 

In thermodynamic limit apply Stirlings formula and equation (13) becomes 

 𝐥𝐧 𝕎 = ℕ 𝐥𝐧 ℕ − 𝑵 − ∑ 𝒏𝒔𝒓 𝐥𝐧 𝒏𝒔𝒓

𝒔𝒓

+ ∑ 𝒏𝒔𝒓

𝒔𝒓

= ℕ 𝐥𝐧 ℕ − ∑ 𝒏𝒔𝒓 𝐥𝐧 𝒏𝒔𝒓

𝒓

   

(18) 

If 𝒏𝒔𝒓 changes by a small amount 𝐥𝐧 𝕎 also changes by a small amount as given below 

 𝜹(𝐥𝐧 𝕎) = ∑  (𝐥𝐧 𝒏𝒔𝒓 + 𝟏)𝜹𝒏𝒔𝒓

𝒓

 
(19) 

Now for 𝒏𝒔𝒓 to be maximum 𝜹(𝐥𝐧 𝕎) should become zero, provided equations (12) and 

(13) and (14) also satisfy the following conditions simultaneously 

  ∑ 𝜹𝒏𝒔𝒓

𝒓

= 𝟎 
(20) 
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  ∑ 𝑬𝒔 𝜹𝒏𝒔𝒓

𝒔𝒓

= 𝟎 
(21) 

 

  ∑ 𝑵𝒓 𝜹𝒏𝒔𝒓

𝒓

= 𝟎 
(22) 

Now to get the set {𝒏𝒓
∗}, method of Lagrange’s undetermined multiplier can be used 

according to which equations (20), (21) and (23) together yield the condition 

 ∑  (− (𝐥𝐧 𝒏𝒔𝒓 + 𝟏) − 𝜶𝑵𝒓 − 𝜷𝑬𝒔

𝒓

− 𝜸) 𝜹𝒏𝒔𝒓 = 𝟎 
(23) 

Where 𝜶, 𝜷 and 𝜸 are Lagrange’s undetermined multipliers. Since 𝜹𝒏𝒓 is completely 

arbitrary, for equation (18) to be satisfied its  coefficients must become zero, i.e. for all r 

 (− (𝐥𝐧 𝒏𝒓
∗ + 𝟏) − 𝜶𝑵𝒓 − 𝜷𝑬𝒔 − 𝜸) = 𝟎 (24) 

 

Or  

 𝐥𝐧 𝒏𝒔𝒓
∗ = −𝟏 − 𝜶𝑵𝒓 − 𝜷𝑬𝒔 − 𝜸  (25) 

Or  

 𝒏𝒔𝒓
∗ = 𝒆−(𝟏+𝜸)𝒆−𝜷𝑬𝒓−𝜶𝑵𝒓 = 𝑪 𝒆−𝜷𝑬𝒓−𝜶𝑵𝒓 (26) 

 

Where now 𝑪,  𝜶 and 𝜷 are two undetermined parameters and (26) gives us  the most 

probable distribution. To calculate 𝑪, we note  

 ∑ 𝒏𝒔𝒓
∗

𝒓

=  ℕ = 𝑪 ∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

𝒔𝒓

 
(27) 

Or  

 
𝑪 =

ℕ

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

 

 

(28) 

Therefore,  
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𝑷𝒔𝒓 =

𝒏𝒔𝒓
∗

ℕ
=  

𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

 
(29) 

 

In Thermodynamic limit at equilibrium 
𝒏𝒔𝒓

∗

ℕ
≈

〈𝒏𝒔𝒓〉

ℕ
, therefore, 

 〈𝒏𝒔𝒓〉

ℕ
≈

𝒏𝒔𝒓
∗

ℕ
=  

𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

 
(30) 

The undetermined parameters 𝜶 and  𝜷 are determined by the equations for average number of 

particles〈𝑵〉 and average energy 〈𝑬〉 in each system of the ensemble with prior knowledge of their 

values: 

 
〈𝑵〉 =  

∑ 𝑵𝒓𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

= −
𝝏

𝝏𝜶
{𝐥𝐧 ∑ 𝑵𝒓𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

𝒔𝒓

} 
(31) 

 

 
〈𝑬〉 =  

∑ 𝑬𝒔𝒆−𝜷𝒔−𝜶𝑵𝒓
𝒔𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

== −
𝝏

𝝏𝜷
{𝐥𝐧 ∑ 𝑬𝒓𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

𝒔𝒓

} 
(32) 

5. Link between Grand Canonical Ensemble and Thermodynamics : 

Thermodynamic potential  

 To establish a link between the Grand canonical ensemble and thermodynamics, we 

introduce a quantity 𝒒, called 𝒒 potential as follows: 

 
𝒒 = 𝐥𝐧 {∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

𝒔𝒓

} 
(33) 

𝒒 is a function of 𝜶, 𝜷 and all the energy states 𝑬𝒔. Taking the differential of 𝒒, we have 

 
𝒅𝒒 = −

∑ 𝑵𝒓𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

𝒅𝜶 −
∑ 𝑬𝒔𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

𝒔𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

𝒅𝜷

− 𝜷 ∑
𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

𝒔𝒓

𝒅𝑬𝒔 

(34) 

Or using equations (30), (31) and (32), we have 
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𝒅𝒒 = −〈𝑵〉𝒅𝜶 − 〈𝑬〉𝒅𝜷 −
𝜷

ℕ
∑〈𝒏𝒔𝒓〉

𝒔𝒓

𝒅𝑬𝒔 

Which can be further written as 

 
𝒅(𝒒 + 𝜶〈𝑵〉 + 𝜷〈𝑬〉) = 𝜷 (−

𝜶

𝜷
𝒅〈𝑵〉 − 𝒅〈𝑬〉 −

𝟏

ℕ
∑〈𝒏𝒔𝒓〉

𝒔𝒓

𝒅𝑬𝒔) 
(35) 

Now if we compare the expression with in the parenthesis with the first law of 

thermodynamics: 

 𝜹𝑸 = −
𝜶

𝜷
𝒅〈𝑵〉 − 𝒅〈𝑬〉 + 𝜹𝑾 

(36) 

We can arrive at the following correspondence 

 𝝁 = −
𝜶

𝜷
 

(37) 

 
 𝜹𝑾 = −

𝟏

ℕ
∑〈𝒏𝒔𝒓〉

𝒔𝒓

𝒅𝑬𝒔 
(38) 

 

So that 

 𝒅(𝒒 + 𝜶〈𝑵〉 + 𝜷〈𝑬〉) = 𝜷 𝜹𝑸  (39) 

A closer look at equation (39) and comparing it with 𝒅𝑺 =
𝜹𝑸

𝑻
 tells us that the coefficient 

𝜷 on the right hand side should correspond to reciprocal of temperature 𝑻, so that  

 
𝜷 =

𝟏

𝒌𝑩𝑻
 

(40) 

From equation (37), it immediately follows that  

 𝜶 = −
𝝁

𝒌𝑩𝑻
 

(41) 

Left hand side of equation (39), then provides correspondence of the quantity 𝒒 +
𝜶〈𝑵〉 + 𝜷〈𝑬〉 with entropy, such that 
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𝑺

𝒌𝑩
= 𝒒 + 𝜶〈𝑵〉 + 𝜷〈𝑬〉 

Or  

 
𝒒 =

𝑺

𝒌𝑩
− 𝜶〈𝑵〉 − 𝜷〈𝑬〉 =

𝑺

𝒌𝑩
−

𝝁〈𝑵〉

𝒌𝑩𝑻
−  

〈𝑬〉

𝒌𝑩𝑻
=

𝑻𝑺 + 𝝁〈𝑵〉 − 〈𝑬〉

𝒌𝑩𝑻
 

 

(42) 

The function 𝒌𝑩𝑻 𝒒 = 𝑻𝑺 + 𝝁〈𝑵〉 − 〈𝑬〉 is the well known Thermodynamic Potential 𝚽 

which describes an open, isochoric and isothermal collection 

𝚽(𝑻, 𝝁, 𝑽) = 𝑻𝑺 + 𝝁〈𝑵〉 − 〈𝑬〉 = 𝒒𝒌𝑩𝑻 

 

Recalling that Gibbs free energy   𝑮 = 𝝁〈𝑵〉 = 〈𝑬〉 − 𝑻𝑺 + 𝑷𝑽, equation (42) becomes 

 
𝒒 = 𝐥𝐧 {∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

𝒔𝒓

}  =
𝑷𝑽

𝒌𝑩𝑻
 

 

(43) 

Equation (43) provides a bridge between thermodynamics and grand canonical ensemble. 

6.  Grand Canonical Partition Function  and Thermodynamic Functions 

We can define  grand canonical partition function ℤ,  

 

 
 ℤ = {∑ 𝒆

−
𝑬𝒔

𝒌𝑩𝑻
+

𝝁𝑵𝒓
𝒌𝑩𝑻

𝒔𝒓

} 
(44) 

 Defining 𝒆
𝝁

𝒌𝑩𝑻 = 𝒇 called fugacity  equation (44)  can be written as 

 

ℤ = {∑(𝒇)𝑵𝒓  𝒆
−

𝑬𝒔
𝒌𝑩𝑻

 

𝒔𝒓

} = {∑(𝒇)𝑵𝒓 ( ∑ 𝒆
−

𝑬𝒔
𝒌𝑩𝑻

 
 

𝒔

)

𝒓

} 

(45) 
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The expression 𝒁𝑵𝒓
(𝑽, 𝑻) = ( ∑ 𝒆

−
𝑬𝒔

𝒌𝑩𝑻
 
 𝒔 ) is the canonical partition function for a fixed 

𝑵𝒓 and has in it via energy, dependence on volume. Therefore, Grand canonical partition 

function can be written as  

 

ℤ = { ∑ (𝒇)𝑵𝒓𝒁𝑵𝒓
(𝑽, 𝑻)

∞

𝑵𝒓=𝟎

} 

(46) 

Hence 𝒒 is related to the partition function via the relation 

 
𝒒 = 𝐥𝐧 ℤ(𝒇, 𝑽, 𝑻) =

𝑷𝑽

𝒌𝑩𝑻
 

(47) 

Now we are in a position to write down the thermodynamic functions of interest in terms 

of 𝒒 or ℤ  

Pressure: 

 
𝑷 =   

𝒌𝑩𝑻

𝑽
𝒒(𝒇, 𝑽, 𝑻) = 𝐥𝐧 ℤ(𝒇, 𝑽, 𝑻) 

(48) 

Average number of particles in equilibrium 

 
𝑵 = 〈𝑵〉 = 𝒌𝑩𝑻 [

𝝏𝒒(𝝁, 𝑽, 𝑻)

𝝏𝝁
]

𝑽,𝑻

= [𝒇
𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝒇
]

𝑽,𝑻

 
(49) 

Internal Energy  

 
𝐄 = 〈𝑬〉  = − [

𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝜷
]

𝑽,𝒇

= 𝒌𝑩𝑻𝟐 [
𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝑻
]

𝑽,𝒇

 
(50) 

One can get 𝑬 as a function of 𝑵, 𝑽, 𝑻 by eliminating 𝒇  between equations (49) and (50). 

Using this functional form, taking derivative with respect to 𝑻 gives specific heat at 

constant volume. 

Equation of state: It is a relationship between 𝑷, 𝑽, 𝑻 and can be obtained by eliminating 

𝒇 between equations (48) and (49) 

Helmholtz free energy: 

 𝑭 = 𝑬 − 𝑻𝑺 + 𝑷𝑽 − 𝑷𝑽 = 𝑮 − 𝑷𝑽 = 𝑵𝝁 − 𝑷𝑽

= 𝑵𝒌𝑩𝑻 𝐥𝐧 𝒇 − 𝒌𝑩𝑻 𝐥𝐧 ℤ(𝒇, 𝑽, 𝑻) = −𝒌𝑩𝑻 𝐥𝐧
ℤ(𝒇, 𝑽, 𝑻)

𝒇𝑵
 

(51) 
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Interestingly, argument of the logarithm is canonical distribution function. 

Entropy:  

 
𝑺 =

𝑬 − 𝑭

𝑻
= 𝒌𝑩𝑻 [

𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝑻
] − 𝑵𝒌𝑩 𝐥𝐧 𝒇 + 𝒌𝑩𝒒(𝒇, 𝑽, 𝑻)  

(52) 

7.  Grand Canonical Partition Function and Single Orbital Partition 

Functions   

 Keeping equation (13) in mind the grand partition function (46) 

ℤ = = { ∑ (𝒇)𝑵𝒓𝒁𝑵𝒓
(𝑽, 𝑻)

∞

𝑵𝒓=𝟎

} 

  By recalling that 

𝒁𝑵𝒓
(𝑽, 𝑻) = ( ∑ 𝒆

−
𝑬𝒔

𝒌𝑩𝑻
 
 

𝒔

) = ( ∑ 𝒆
− ∑

𝑵𝒓𝑬𝒓
𝒌𝑩𝑻𝒓  

 

{𝑵𝒓}

) 

With ∑  𝑵𝒓 {𝑵𝒓} = 𝑵,  can be written as 

 

ℤ = = { ∑ (𝒇)𝑵𝒓 ∑ (𝒆
− ∑

𝑵𝒓𝑬𝒓
𝒌𝑩𝑻𝒓

 )

{𝑵𝒓}

∞

𝑵𝒓=𝟎

} 

(53) 

Or  

 

ℤ = = { ∑ ∑(𝒇) ∑ 𝑵𝒓𝒓 (𝒆
− ∑

𝑵𝒓𝑬𝒓
𝒌𝑩𝑻𝒓

   )

{𝑵𝒓}

∞

𝑵𝒓=𝟎

} 

(54) 

Or 

 

ℤ =  { ∑ ∑ ∏ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓
  

𝒓

 

{𝑵𝒓}

∞

𝑵𝒓=𝟎

} 

(55) 

This can be further written as  
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ℤ =  {∏ ∑ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓

 

∞

𝑵𝒓=𝟎

  

𝒓

} 

(56) 

 

Here the product is over the partition function for a single orbital only with all possible 

number of particles. In this form grand particle function becomes a very useful result 

providing us to find the grand partition function from one orbital partition function. We 

shall see its utility later in deriving Fermi-Dirac and Bose-Einstein distribution function 

which is decided the number of particles allowed in an orbital or state.  

8. Applications   

Here we discuss two applications of Grand canonical ensemble. First one is our prototype 

example of an ideal gas and second one is to derive Fermi-Dirac and Bose-Einstein 

distribution function. The real effectiveness of grand canonical ensemble becomes useful 

when one applies it to systems involving interparticle interaction and systems having 

quantum statistical effect. 

8.1 Classical Ideal Gas  

 The grand partition function for a macroscopic system is given by  

ℤ = = {∑(𝒇)𝑵𝒁𝑵(𝑽, 𝑻)

∞

𝑵=𝟎

} 

Where 𝒁𝑵(𝑽, 𝑻) is the canonical partition function and 𝒇 = 𝒆
𝝁

𝒌𝑩𝑻 is fugacity. For an ideal 

gas the partition function of such a system can be written as made up single particle 

partition function 𝒁𝟏(𝑽, 𝑻): 

 
𝒁𝑵(𝑽, 𝑻) =

[𝒁𝟏(𝑽, 𝑻)]𝑵

𝑵!
 

(57) 

Here factor 𝑵! in the denominator takes care of indistinguishability of particles. Once 

again recalling that since particles in the system are free to be anywhere in the volume in 

which they are enclosed, therefore, 𝒁𝟏(𝑽, 𝑻) shall be proportional to 𝑽 and a function of 

𝑻, so that  

   𝒁𝟏(𝑽, 𝑻) = 𝑽𝒈(𝑻) (58) 

Where 𝒈(𝑻) is a function of 𝑻 alone. You may recall for earlier discussion of the 

classical ideal gas in canonical ensemble 𝒈(𝑻) = (
𝟐𝝅𝒎𝒌𝑩𝑻

𝒉𝟐 )
𝟑/𝟐
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Thus the grand partition function of the ideal gas can be written as 

 
ℤ = ∑  

[𝒇𝑽𝒈(𝑻)]𝑵

𝑵!
 

∞

𝑵=𝟎

 = 𝒆𝒇𝑽𝒈(𝑻) 
(59) 

Hence the q potential for the ideal gas can be written as 

 𝒒(𝒇, 𝑽, 𝑻) = 𝐥𝐧 ℤ(𝒇, 𝑽, 𝑻) = 𝒇𝑽𝒈(𝑻) (60) 

Pressure: 

From equation (48) we have Pressure 𝑷 

 
𝑷 =

𝒌𝑩𝑻

𝑽
𝒒(𝒇, 𝑽, 𝑻) =  𝒌𝑩𝑻𝒇𝒈(𝑻)  

(61) 

Average number of particles: 

From equation (49) we have average number of particles 𝑵 

 
𝑵 = [𝒇

𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝒇
]

𝑽,𝑻

= 𝒇𝑽𝒈(𝑻) 
(62) 

Internal Energy, Helmholtz Free Energy, Entropy: 

From equation (50)  we have the Internal Energy E  

 
𝐄 = 𝒇𝑽𝒌𝑩𝑻𝟐 [

𝝏𝒈(𝑻)

𝝏𝑻
]

𝑽,𝒇
 

(63) 

From equation (51), we have Helmholtz free energy 

 𝑭 =  𝑵𝒌𝑩𝑻 𝐥𝐧 𝒇 − 𝒌𝑩𝑻 𝐥𝐧 ℤ(𝒇, 𝑽, 𝑻) = 𝑵𝒌𝑩𝑻 𝐥𝐧 𝒇 − 𝒌𝑩𝑻 𝒇𝑽𝒈(𝑻)  (64) 

And finally from equation (52) we have entropy  

 
𝑺 =  𝒌𝑩𝒇𝑽 [𝑻 [

𝝏𝒈(𝑻)

𝝏𝑻
] +  𝒈(𝑻)]

 

− 𝑵𝒌𝑩 𝐥𝐧 𝒇 
(65) 

 Equation of State: 

Eliminating 𝒇 from equation (60 and (61), we get 

 𝑷𝑽 = 𝑵𝒌𝑩𝑻 (66) 
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Equation of state is independent of the functional form of 𝒈(𝑻). 

Internal energy:  

Eliminating 𝒇 between equation (62) and (63) 

 
𝐄 = 𝒇𝑽𝒌𝑩𝑻𝟐 [

𝝏𝒈(𝑻)

𝝏𝑻
]

𝑽,𝒇
=

𝑵 𝒌𝑩𝑻𝟐

 𝒈(𝑻)
[
𝝏𝒈(𝑻)

𝝏𝑻
]

𝑽,𝒇
 

(67) 

Specific heat at constant volume: 

Taking the derivative of equation (67) with respect to temperature 𝑻, specific heat at 

constant volume is given by 

 

𝑪𝑽 =

𝑵 𝒌𝑩 [− 𝑻𝟐  [
𝝏𝒈(𝑻)

𝝏𝑻
]

𝟐

𝑽,𝒇
+ 𝒈(𝑻)𝑻𝟐 𝝏𝟐𝒈(𝑻)

𝝏𝑻𝟐 + 𝟐𝑻𝒈(𝑻)
𝝏𝒈(𝑻)

𝝏𝑻
]

[𝒈(𝑻)]𝟐
 

(68) 

To see whether𝑬 and 𝑪𝑽 indeed are well known results for classical ideal gas, we require 

explicit temperature dependence of 𝒈(𝑻) which is known to be proportional to some 

power of 𝑻. If we suppose this to be 𝒈(𝑻) ∝ 𝑻𝒏, we get  

 
𝑬 =

𝑵 𝒌𝑩𝑻𝟐

 𝒈(𝑻)
[
𝝏𝒈(𝑻)

𝝏𝑻
]

𝑽,𝒇
= 𝒏

𝑵 𝒌𝑩𝑻𝟐

 𝑻𝒏
 𝑻𝒏−𝟏 = 𝒏𝑵𝒌𝑩𝑻 

(69) 

For an ideal gas n=3/2 which gives us the well known result. 

𝑪𝑽 =

𝑵 𝒌𝑩 [− 𝑻𝟐  [
𝝏𝒈(𝑻)

𝝏𝑻
]

𝟐

𝑽,𝒇
+ 𝒈(𝑻)𝑻𝟐 𝝏𝟐𝒈(𝑻)

𝝏𝑻𝟐 + 𝟐𝑻𝒈(𝑻)
𝝏𝒈(𝑻)

𝝏𝑻
]

[𝒈(𝑻)]𝟐
 

 𝑪𝑽 = 𝒏𝑵 𝒌𝑩  (70) 

Entropy: 

Eliminating 𝒇 from (65) and (62), we get 

 
𝑺 =

𝒌𝑩𝑵

 𝒈(𝑻)
 [𝑻 [

𝝏𝒈(𝑻)

𝝏𝑻
] +  𝒈(𝑻)]

 

− 𝑵𝒌𝑩 𝐥𝐧
𝑵

𝑽𝒈(𝑻)
 

(71) 

One can see that it is an extensive quantity. 

Helmholtz free energy: 
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Eliminating 𝒇 from  (64) and (62) we get 

 
𝑭 = 𝑵𝒌𝑩𝑻 [𝐥𝐧  

𝑵

𝑽𝒈(𝑻)
− 𝟏] 

 

(72) 

Once again one can notice that it is an extensive quantity. 

8.1 Derivation of Bose and Fermi Distribution Functions 

Writing Grand canonical partition function in terms of  single orbital partition functions 

offers a very interesting way to derive Bose and Fermi distributions.    

According to equation (56), single orbital partition function can be written as 

 

𝒁𝟏 = ∑ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓

 

𝑵𝒓

 

(73) 

The summation in equation (37) has two possibilities to choose 𝑵𝒓 while taking the 

summation. In the case of Fermi-Dirac distribution 𝑵𝒓 can take only two values 𝑵𝒓 =0 

and 1, where as in the case of Bose Einstein Distribution 𝑵𝒓 can take values from 0 to ∞. 

These two possible choices lead to two different results for the two distributions as 

discussed below: 

Fermi-Dirac Distribution:  

 
𝒁𝟏 = (𝒇𝒆

−
𝑬𝒓

𝒌𝑩𝑻 )
𝟎

+ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝟏

= 𝟏 + 𝒆
𝝁−𝑬𝒓
𝒌𝑩𝑻   

(74) 

Thus the grand partition function for the Fermi-Dirac Distribution becomes 

 
ℤ =  {∏ (𝟏 + 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

} 
(75) 

Therefore, q-potential can be obtained as 

 
𝒒 = 𝐥𝐧 ℤ =  ∑ 𝐥𝐧 (𝟏 + 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

 
(76) 
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Bose-Einstein:  

 
𝒁𝟏 = ∑ (𝒇𝒆

−
𝑬𝒓

𝒌𝑩𝑻 )
𝑵𝒓

 

∞

𝑵𝒓=𝟎

 = 𝟏 + 𝒆
𝝁−𝑬𝒓
𝒌𝑩𝑻 + (𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝟐

+ ⋯   
(77) 

This is a geometrical progression (G.P.) and is convergent provided 𝒆
𝝁−𝑬𝒓
𝒌𝑩𝑻 < 𝟏 for every 

𝑬𝒓. This is possible only if 𝝁 < 𝟎, which is a very important result that for a bose system 

chemical potential is always negative. Thus (77), which is a sum of a convergent series 

can be written as 

 
𝒁𝟏 =

𝟏

(𝟏 − 𝒆
𝝁−𝑬𝒓
𝒌𝑩𝑻 )

  
(78) 

Thus the grand partition function for the Bose-Einstein Distribution becomes 

 
ℤ =  {∏ (𝟏 − 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

−𝟏

𝒓

} 
(79) 

Therefore, q-potential can be obtained as 

 
𝒒 = 𝐥𝐧 ℤ =  − ∑ 𝐥𝐧 (𝟏 − 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

 
(80) 

For Fermi-Dirac distribution and Bose-Einstein distribution together the 𝒒-potential can 

be written as 

 
𝒒 = ± ∑ 𝐥𝐧 (𝟏 ± 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

 
(81) 

(+) sign gives Fermi-Dirac distribution and (-) gives Bose-Einstein distribution. 

Since 𝒒(𝒇, 𝑽, 𝑻) =
𝑷𝑽

𝒌𝑩𝑻
  

For the two distributions pressure can be obtained as 

 
𝑷 = ±

𝒌𝑩𝑻

𝑽
∑ 𝐥𝐧 (𝟏 ± 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

=  ±
𝒌𝑩𝑻

𝑽
∑ 𝐥𝐧 (𝟏 ± 𝒇𝒆

−𝑬𝒓
𝒌𝑩𝑻)

𝒓

 
(82) 

Mean energy can be obtained from equation (50) 
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 〈𝑬〉  = −𝒌𝑩𝑻𝟐 [
𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝑻
]

𝑽,𝒇

= ∓ 𝒌𝑩𝑻𝟐 [
𝝏 ∑ 𝐥𝐧 (𝟏 ± 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )𝒓

𝝏𝑻
]

𝑽,𝒇

=    ∑
 𝑬𝒓

(𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ± 𝟏)

  

𝒓

 

Average number of particles can be obtained from equation (51): 

 
〈𝑵〉 = [𝒇

𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝒇
]

𝑽,𝑻

=  ∑
𝟏

 (𝒇−𝟏𝒆
𝑬𝒓

𝒌𝑩𝑻 ± 𝟏)𝒓

=  ∑
𝟏

 (𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ± 𝟏)𝒓

 
(83) 

 Mean occupation number  of an orbital or level 𝑬𝒓 

 
〈𝒏𝑬𝒓

〉 = [𝒇
𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝒇
]

𝑽,𝑻,𝒂𝒍𝒍 𝒐𝒕𝒉𝒆𝒓 𝑬𝒓

=  
𝟏

 (𝒇−𝟏𝒆
𝑬𝒓

𝒌𝑩𝑻 ± 𝟏)

=
𝟏

 (𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ± 𝟏)

 

(84) 

In the Maxwell Boltzmann case 𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ≫ 𝟏 for all values of single orbital energies 

including 𝑬𝒓 = 𝟎  which essential implies 𝒆
−𝝁

𝒌𝑩𝑻 ≫ 𝟏 and 𝝁 must be negative and | 𝝁| ≫
𝒌𝑩𝑻 .  The Bose-Einstein Distribution and Fermi Dirac Distribution tend to so called 

Maxwell-Boltzmann 

  
〈𝒏𝑬𝒓

〉 =  𝒆
𝝁−𝑬𝒓
𝒌𝑩𝑻 ∝   𝒆

−𝑬𝒓
𝒌𝑩𝑻 

(85) 

Also mean occupation per orbital in Maxwell-Boltzmann reduces to the fact that  

〈𝒏𝑬𝒓
〉 ≪ 𝟏, i.e. probability of occupation to be greater than 1 is negligible. Figure 2 

below shows occupation number per orbital state 〈𝒏𝑬𝒓
〉 for the three cases. It is clear in 

the figure that for large value of 
𝑬𝒓−𝝁

𝒌𝑩𝑻
 the Fermi-Dirac distribution curve (a) and Bose-

Einstein distribution curve (b) merges with the Maxwell-Boltzmann distribution curve 

(b). In the case of Fermi-Dirac distribution occupation number is never goes higher than 

1. In the case of Bose-Einstein  distribution as 𝑬𝒓 = 𝝁, occupancy of that level becomes 

infinite leading to the phenomenon of Bose-Einstein Condensation. 
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Figure 2 (a) Fermi Dirac Distribution (b) Maxwell Boltzmann Distribution (c) Bose Einstein Distribution for a non-

interacting system 

7. Summary 

In this module we have learnt  

 That Grand canonical ensemble corresponds to an open, isochoric, isothermal 

system; which allows exchange of energy and exchange of particles with the 

surroundings unlike micro canonical ensemble which corresponds to a 

completely isolated system and canonical ensemble which allows exchange of 

energy but does not allow exchange of particles. 

 That Grand canonical probability distribution function can be derived by two two 

distinct approaches (i) System and Heat Bath approach (ii) most probable 

approach. First approach treats system in equilibrium with the heat bath at a 

common temperature 𝑻 and the other involves regarding the system being studied 

as a member of  collection of large number of exact replicas of the system, in all 

possible microstates, called an ensemble. Both approaches provide us 

dependence of probability of finding a system with energy 𝑬𝒔 and number of 

particles 𝑵𝒓 given by 

𝑷𝒔𝒓 =  
𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓

∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓

 

Where 𝜷 =
𝟏

𝑲𝑩𝑻
 and 𝜶 = −

𝝁

𝒌𝑩𝑻
 . 

(a) 

(b) 

(c) 

〈𝒏𝑬𝒓
〉 

𝐸𝑟 − 𝜇

𝑘𝐵𝑇
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 That the probability so defined is linked with thermodynamics via 𝒒 potential 

𝒒(𝝁, 𝑽, 𝑻) = 𝐥𝐧{∑ 𝒆−𝜷𝑬𝒔−𝜶𝑵𝒓
𝒔𝒓 },   which is linked with thermodynamic potential, 

describing an open, isochoric and isothermal system such that 

𝚽(𝑻, 𝝁, 𝑽) = 𝑻𝑺 + 𝝁〈𝑵〉 − 〈𝑬〉 = 𝒒𝒌𝑩𝑻 

  That we can define Grand Partition function ℤ from the knowledge of  𝑷𝒔𝒓 in the 

following forms 

ℤ = {∑ 𝒆
−

𝑬𝒔
𝒌𝑩𝑻

+
𝝁𝑵𝒓
𝒌𝑩𝑻

𝒔𝒓

}  

Or 

{∑(𝒇)𝑵𝒓 ( ∑ 𝒆
−

𝑬𝒔
𝒌𝑩𝑻

 
 

𝒔

)

𝒓

} 

Or  

ℤ = = { ∑ (𝒇)𝑵𝒓𝒁𝑵𝒓
(𝑽, 𝑻)

∞

𝑵𝒓=𝟎

} 

Where 𝒁𝑵𝒓
(𝑽, 𝑻) = ( ∑ 𝒆

−
𝑬𝒔

𝒌𝑩𝑻
 
 𝒔 ) for a given 𝑵𝒓   that is  

𝒁𝑵𝒓
= ( ∑ 𝒆

− ∑
𝑵𝒓𝑬𝒓
𝒌𝑩𝑻𝒓  

 {𝑵𝒓} ) is the canonical distribution  function and 𝒇 = 𝒆
𝝁

𝒌𝑩𝑻   is 

fugacity. 

 Knowing ℤ and 𝒒- potential the other thermodynamic functions can easily be 

obtained by using following formulae 

Pressure 
𝑷 =   

𝒌𝑩𝑻

𝑽
𝒒(𝒇, 𝑽, 𝑻) = 𝐥𝐧 ℤ(𝒇, 𝑽, 𝑻) 

Average number of 

particles 𝑵 = 〈𝑵〉 = 𝒌𝑩𝑻 [
𝝏𝒒(𝝁, 𝑽, 𝑻)

𝝏𝝁
]

𝑽,𝑻

= [𝒇
𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝒇
]

𝑽,𝑻

 

Internal Energy  
𝐄 = 〈𝑬〉  = − [

𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝜷
]

𝑽,𝒇

= 𝒌𝑩𝑻𝟐 [
𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝑻
]

𝑽,𝒇

 

Helmholtz free 

energy 𝑭 =  −𝒌𝑩𝑻 𝐥𝐧
ℤ(𝒇, 𝑽, 𝑻)

𝒇𝑵
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Entropy 
𝑺 = 𝒌𝑩𝑻 [

𝝏𝒒(𝒇, 𝑽, 𝑻)

𝝏𝑻
] − 𝑵𝒌𝑩 𝐥𝐧 𝒇 + 𝒌𝑩𝒒(𝒇, 𝑽, 𝑻)  

 How Grand canonical partition function can be written in terms of single orbital 

partition functions as  

ℤ = = {∏ ∑ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓

 

∞

𝑵𝒓=𝟎

  

𝒓

} 

Where 𝒁𝟏 = ∑ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓

 ∞ 
𝑵𝒓

is the single orbital partition function. 

 That using Grand canonical partition function can be used to derive the 

thermodynamic properties of a classical ideal gas by the same recipe which was 

used in the case of canonical ensemble. 

 That Fermi Dirac distribution  function and Bose-Einstein distribution functions 

can be derived from single orbital partition function by using the fact that for 

Fermi-Dirac distribution an orbital can have either zero or one particles and for 

Bose-Einstein distribution function number of particles can take values from zero 

to infinity, paving way for calculating various thermodynamic properties.  

 The Grand partition function for Fermi-Dirac and Bose Einstein case are 

respectively ℤ =  {∏ (𝟏 + 𝒆
𝝁−𝑬𝒓
𝒌𝑩𝑻 )𝒓 } and ℤ =  {∏ (𝟏 − 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

−𝟏

𝒓 } 

 The various thermodynamic properties for the Fermi Dirac and Bose Einstein 

cases can obtained from the knowledge of respective partition functions (+ sign 

for Fermi-Dirac and – sign for Bose Einstein cases respectively) 

q-potential 
𝒒 = ± ∑ 𝐥𝐧 (𝟏 ± 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

 

Pressure 
𝑷 = ±

𝒌𝑩𝑻

𝑽
∑ 𝐥𝐧 (𝟏 ± 𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 )

𝒓

 

Average energy 
〈𝑬〉  =     ∑

 𝑬𝒓

(𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ± 𝟏)

  

𝒓

 

Average number of particles 
〈𝑵〉 =   ∑

𝟏

 (𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ± 𝟏)𝒓

 

Mean occupation number 
〈𝒏𝑬𝒓

〉 =  
𝟏

 (𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ± 𝟏)
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 That under the condition 𝒆
𝑬𝒓−𝝁

𝒌𝑩𝑻 ≫ 𝟏 the mean occupation numbers of both Bose-

Einstein  and Fermi Dirac Distributions reduce to Maxwell Boltzmann 

distribution  

〈𝒏𝑬𝒓
〉 =  𝒆

𝝁−𝑬𝒓
𝒌𝑩𝑻 ∝   𝒆

−𝑬𝒓
𝒌𝑩𝑻 

 From the plot of occupation number of Fermi Dirac Distribution that it never 

goes higher than 1. 

 That the occupation number curves for the three distributions merge for large 

values of  
𝑬𝒓−𝝁

𝒌𝑩𝑻
 .  

 At  𝑬𝒓 = 𝝁 occupation number corresponding to Bose-Einstein distribution goes 

to infinity leading to Bose Einstein condensation. 

Appendices  

 A1 Some Intermediate Results 

 To prove (55) is same as (56) 

  

 

  { ∑ ∑ ∏ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓
  

𝒓

 

{𝑵𝒓}

∞

𝑵𝒓=𝟎

} = {∏ ∑ (𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 )

𝑵𝒓

 

∞

𝑵𝒓=𝟎

  

𝒓

} 

 

  

Let us put 𝒇𝒆
−

𝑬𝒓
𝒌𝑩𝑻 = 𝒙𝒓, this means we have to prove 

 

  { ∑ ∑ ∏(𝒙𝒓 )𝑵𝒓
  

𝒓

 

{𝑵𝒓}

∞

𝑵𝒓=𝟎

} = {∏ ∑ (𝒙𝒓 )𝑵𝒓  

∞

𝑵𝒓=𝟎

  

𝒓

} 

 

Let us choose two sets {𝑵𝟏} 𝐚𝐧𝐝 {𝑵𝟐} such that each 𝑵𝟏 and 𝑵𝟐 take values 0, 1, 2 and 

directly expand the left hand side 

∑ ∑ ∏(𝒙𝒓 )𝑵𝒓
  

𝒓

 
{𝑵𝒓}

𝟐

𝑵𝒓=𝟎

= ∑ ∑  (𝒙𝒓 )𝑵𝟏(𝒙𝒓 )𝑵𝟐  
{𝑵𝒓}

𝟐

𝑵𝒓=𝟎

= ∑ {(𝒙𝟏 )𝟎(𝒙𝟐 )𝟎+ (𝒙𝟏 )𝟎(𝒙𝟐 )𝟏+ (𝒙𝟏 )𝟏(𝒙𝟐 )𝟎+ (𝒙𝟏 )𝟏(𝒙𝟐 )𝟏 + (𝒙𝟏 )𝟎(𝒙𝟐 )𝟐

𝟐

𝑵𝒓=𝟎

+ (𝒙𝟏 )𝟐(𝒙𝟐 )𝟎 + (𝒙𝟏 )𝟏(𝒙𝟐 )𝟐+ (𝒙𝟏 )𝟐(𝒙𝟐 )𝟏+ (𝒙𝟏 )𝟐(𝒙𝟐 )𝟐 =   
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= ∑ {𝟏 + (𝒙𝟐 )𝟏+ (𝒙𝟏 )𝟏+ (𝒙𝟏 )𝟏(𝒙𝟐 )𝟏 + (𝒙𝟐 )𝟐 + (𝒙𝟏 )𝟐  

𝟐

𝑵𝒓=𝟎

+  (𝒙𝟏 )𝟏(𝒙𝟐 )𝟐+ (𝒙𝟏 )𝟐(𝒙𝟐 )𝟏+ (𝒙𝟏 )𝟐(𝒙𝟐 )𝟐}  

 

= ∑ {(𝟏 + 𝒙𝟏 + 𝒙𝟏
𝟐)(𝟏 + 𝒙𝟐 + 𝒙𝟐

𝟐

𝟐

𝑵𝒓=𝟎

} 

= ∏ ∑ (𝒙𝒓)𝑵𝒓     

𝟐

𝑵𝒓=𝟎𝒓

 

= L.H.S. 

This can be extended further to see that this is true in general. 

A2 Spreadsheet for plotting Occupation number distribution 
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